Dynamics of Stars and Black Holes in Dense Stellar Systems:

Lecture IV:

Dynamical processes induced by mass spectrum

0. EFFECTS OF MASS SPECTRUM
1. MASS SEGREGATION
2. EQUIPARTITION of ENERGY
3. SPITZER'S INSTABILITY
Does core collapse require a mass function (= a system of non-equal mass stars) to occur?
0. EFFECTS OF MASS SPECTRUM

Processes described up to now (two-body relaxation, evaporation, gravothermal instability, core collapse and reversal) OCCUR EVEN IF STARS ARE EQUAL MASS

BUT stars form with a mass function

\[\frac{dN}{dm} \]

The most important effects of unequal-mass system are MASS SEGREGATION and SPITZER'S INSTABILITY

OTHER PROCESSES (eg core collapse) occurring even in equal-mass systems are INFLUENCED by MASS SPECTRUM (eg occur FASTER)
1. MASS SEGREGATION

- what is mass segregation: is it a physical process or a “state” of a stellar system?

- what drives mass segregation?
1. MASS SEGREGATION

From lecture 1: DYNAMICAL FRICTION

Massive stars feel a DRAG FORCE by light stars, which decelerates them.

Same driver as to two-body relaxation:
 two-body encounters where the SOLE gravity force is involved
→ same timescale but different relevant mass

\[
t_{df} \sim \frac{m}{M} \ t_{rilx}
\]
1. MASS SEGREGATION

From lecture 1: DYNAMICAL FRICTION

Massive stars feel a DRAG FORCE by light stars, which decelerates them

Same driver as to two-body relaxation:
- two-body encounters where the SOLE gravity force is involved

→ same timescale but different relevant mass

\[t_{df} \sim \frac{m}{M} t_{rlx} \]

→ Dynamical friction leads MASSIVE STARS to SLOW DOWN wrt light stars

→ MASSIVE STARS SINK to the CENTRE of the CLUSTER (= centre of the potential well)
1. MASS SEGREGATION

From lecture 1: DYNAMICAL FRICTION

Massive stars feel a DRAG FORCE by light stars, which decelerates them

Same driver as to two-body relaxation:
- two-body encounters where the SOLE gravity force is involved
- same timescale but different relevant mass

\[t_{df} \sim \frac{m}{M} t_{rel} \]

→ Dynamical friction leads MASSIVE STARS to SLOW DOWN wrt light stars

→ MASSIVE STARS SINK to the CENTRE of the CLUSTER (= centre of the potential well)

The result is a cluster where the relative frequency of massive stars is higher in the core than in the outskirts:

a MASS STRATIFIED or MASS SEGREGATED cluster

BOTTOM LINE: mass segregation indicates the state of the cluster
The physical process driving mass segregation is dynamical friction
1. MASS SEGREGATION

In mass segregated clusters, LOCAL mass function is different from IMF. For example, the core of 47 Tucanae (Monkman et al. 2006, ApJ, 650, 195) has a mass function slope $x := \frac{dN}{dm} = m^{-1+x}$ where Salpeter $x = -1.35$. The diagram shows the relationship between the mass function slope and the radius in arcsec for 47 Tuc.
1. MASS SEGREGATION

EFFECT ON CORE COLLAPSE:
MASS SEGREGATION increases the instability of the system and induces a FASTER COLLAPSE ($t_{\text{coll}} \sim 0.2 \ t_{\text{rlx}}$ rather than $t_{\text{coll}} \sim 15 \ t_{\text{rlx}}$).

Measured with N-body simulations

If m_{max} is the maximum mass of a star in system and $\langle m \rangle$ is average mass

$$f_{\text{max}} \equiv \frac{m_{\text{max}}}{\langle m \rangle}$$

2. EQUIPARTITION

Theorem of statistical mechanics (Boltzmann 1876):

If a system of ideal gas particles is in thermal equilibrium, energy is shared equally by all particles

Stellar systems can be considered the same as gas particles if temperature is defined as

$$\frac{1}{2} m \langle v^2 \rangle = \frac{3}{2} k_B T$$

EQUIPARTITION for stellar systems: if a collisional system (i.e. where two-body relaxation is efficient) is in thermal equilibrium, PARTICLES TEND TO HAVE THE SAME KINETIC ENERGY

Thus, equipartition occurs EVEN if stars are equal mass.

If stars are equal mass → equipartition implies that have the same VELOCITY LOCALLY

$$k_i = \frac{1}{2} m v_i^2$$
If particles have different masses:

\[m_i \langle v_i^2 \rangle = m_j \langle v_j^2 \rangle \]

if \(m_i > m_j \) \(\Rightarrow \) \(\langle v_i^2 \rangle < \langle v_j^2 \rangle \)

During two-body encounters, massive stars transfer kinetic energy to light stars. Massive stars slow down, light stars move to higher velocities.

SEEMS equivalent to mass segregation: dynamical friction slows down massive stars and they sink to centre.

IS EQUIPARTITION THE SAME AS MASS SEGREGATION?
IS EQUIPARTITION THE SAME AS MASS SEGREGATION?

SHORT ANSWER: NO
2. EQUIPARTITION

IS EQUIPARTITION THE SAME AS MASS SEGREGATION?

SHORT ANSWER: NO

MASS SEGREGATION: Massive stars tend to slow down by dynamical friction and sink to the core leading the system to be mass segregated **VS**

EQUIPARTITION: if the system is in thermal equilibrium the relation

\[m_i \langle v_i^2 \rangle = m_j \langle v_j^2 \rangle \]

MUST BE TRUE

Also equipartition is reached (if it is reached) by dynamical friction but is a more stringent condition than mass segregation

→ a system can be mass segregated WITHOUT being in equipartition
IS EQUIPARTITION THE SAME AS MASS SEGREGATION?

SHORT ANSWER: NO

MASS SEGREGATION: Massive stars tend to slow down by dynamical friction and sink to the core leading the system to be mass segregated

VS

EQUIPARTITION: if the system is in thermal equilibrium the relation

\[m_i \langle v_i^2 \rangle = m_j \langle v_j^2 \rangle \]

MUST BE TRUE

Also equipartition is reached (if it is reached) by dynamical friction but is a more stringent condition than mass segregation

→ a system can be mass segregated WITHOUT being in equipartition

ADDITIONAL CAVEAT: equipartition is a LOCAL condition

PROBLEM: equipartition for star systems is based on analogy with statistical mechanics of gas systems

MIGHT BE MISLEADING!!!!
2. EQUIPARTITION

Is equipartition always reached in a two-body relaxed system?
It is not always possible to reach equipartition in a multi-mass system.

Let us suppose that there are two populations with two different masses:

- HEAVY POPULATION m_2 (total mass M_2)
- LIGHT POPULATION m_1 (total mass M_1)

If the total mass of the heavy population is similar to the total mass of the light population, equipartition is not possible:

$M_2 \approx M_1$

$M_2 \langle v_2^2 \rangle >> M_1 \langle v_1^2 \rangle$

THE LIGHT POPULATION CANNOT ABSORB ALL THE KINETIC ENERGY THAT MUST BE TRANSFERRED FROM THE HEAVY POPULATION TO REACH EQUIPARTITION
The heavy population forms a CLUSTER WITHIN THE CLUSTER (sub-cluster at the centre of the cluster), DYNAMICALLY DECOUPLED from the rest of the cluster.

The massive stars in the sub-cluster keep transferring kinetic energy to the lighter stars but cannot reach equipartition: the core of massive stars continues to CONTRACT TILL INFINITE DENSITY!
3. SPITZER'S INSTABILITY

The contraction stops

– when most of the massive stars eject each-other from the SC by 3-body encounters

SPITZER INSTABILITY ENHANCES THE EJECTION OF MASSIVE OBJECTS (E.G. BLACK HOLES) FROM SCs !!!!
3. SPITZER’S INSTABILITY

The contraction stops
– when most of the massive stars eject each-other from the SC by 3-body encounters

SPITZER INSTABILITY ENHANCES THE EJECTION OF MASSIVE OBJECTS (E.G. BLACK HOLES) FROM SCs !!!!

– or when most of the massive stars collapse into a single object
MATH DEMONSTRATION FROM Spitzer (1969):

Let us suppose that there are two populations with two different masses: m_1 (total mass M_1) and m_2 (total mass M_2), with $m_1 < m_2$.

We explore 2 limit cases where equipartition is impossible.

1) $M_2 \gg M_1 \Rightarrow$ potential is dominated by massive stars

$\Rightarrow <v^2>$ of the massive stars is $\sim \frac{1}{4} <v_{esc}^2>$

\Rightarrow if $m_2/m_1 > 4$, the $<v^2>$ of light stars is higher than $<v_{esc}^2>$

\Rightarrow ALL LIGHT STARS EVAPORATE FROM THE CLUSTER!!!

Not very important in practice because IMF is not sufficiently top-heavy
2) \(M_2 \sim M_1 \) (the case of the so called Spitzer's instability)

If the total mass of the heavy population is similar to the total mass of the light population, equipartition is not possible: the heavy population forms a cluster within the cluster, i.e. a sub-cluster at the centre of the cluster, dynamically decoupled from the rest of the cluster. The sub-cluster of the heavy population tends to contract.

DEMONSTRATION:
(Note that I did not put numerical coefficients & simplified!)
(a) Assume that there are two populations (1 and 2) with \(m_2 >> m_1 \)
(b) assume total mass \(M_2 < M_1 \)
(c) assume \(M_1(r) \sim \rho_{01} r^3 \) \((\rho_{01} := \text{initial density of population 1}) \)
\[\rho_{m2} \sim \frac{M_2}{r_2^3} \] \((\rho_{m2} := \text{average density of population 2, } r_2 := \text{half mass radius of population 2}) \)
\[\rho_{m1} \sim \frac{M_1}{r_1^3} \] \((\rho_{m1} := \text{average density of population 1, } r_1 := \text{half mass radius of population 1}) \)
From equipartition: \(m_i \left\langle v_i^2 \right\rangle = m_j \left\langle v_j^2 \right\rangle \) \hspace{1cm} (1)

From virial theorem:
\[
\left\langle v_2^2 \right\rangle \sim \frac{G M_2}{r_2} + \frac{G}{M_2} \int_0^\infty \frac{\rho_2 M_1(\vec{r})}{\vec{r}} dV
\]
\[
\left\langle v_1^2 \right\rangle \sim \frac{G M_1}{r_1} + \frac{G}{M_1} \int_0^\infty \frac{\rho_1 M_2(\vec{r})}{\vec{r}} dV
\] \hspace{1cm} (2) \hspace{1cm} (3)

Substituting (2) and (3) into (1) and using the assumptions a, b and c:

\[
m_2 \left(\frac{G M_2}{r_2} + \frac{G \rho_{m2}}{M_2} \int \rho_{01} \frac{\vec{r}^3}{\vec{r}} dV \right) = m_1 \frac{G M_1}{r_1}
\]
\[
m_2 \left[\frac{M_2}{\left(\frac{M_2}{\rho_{m2}} \right)^{1/3}} + \frac{\rho_{m2}}{M_2} \int \rho_{01} \vec{r}^2 dV \right] = m_1 \frac{M_1}{\left(\frac{M_1}{\rho_{m1}} \right)^{1/3}}
\]
\[m_2 \frac{M_2^{2/3}}{M_1^{2/3}} \rho_m^{1/3} \left(1 + \frac{\rho_m \int \rho_0 \bar{r}^2 \, dV}{M_2^{5/3} \rho_m^{1/3}} \right) = m_1 M_1^{2/3} \rho_m^{1/3} \]

\[\frac{m_2}{m_1} \left(\frac{M_2}{M_1} \right)^{2/3} = \frac{(\rho_m / \rho_m)^{1/3}}{\left[1 + \frac{\rho_m \int \rho_0 \bar{r}^2 \, dV}{(\rho_m \bar{r}_2^3)^{5/3} \rho_m^{1/3}} \right]} \]

\[\frac{m_2}{m_1} \left(\frac{M_2}{M_1} \right)^{2/3} = \frac{(\rho_m / \rho_m)^{1/3}}{\left(1 + \frac{\rho_m \int \rho_0 \bar{r}^2 \, dV}{\rho_m^2 \bar{r}_2^5} \right)} \]

\[\frac{m_2}{m_1} \left(\frac{M_2}{M_1} \right)^{2/3} = \frac{(\rho_m / \rho_m)^{1/3}}{\left[1 + \frac{\rho_0 \bar{r}_2}{\rho_m \bar{r}_2^5} \right]} \]
3. SPITZER'S INSTABILITY

\[\left(\frac{m_2}{m_1} \right)^{3/2} \left(\frac{M_2}{M_1} \right) = \frac{\left(\frac{\rho_{m1}}{\rho_{m2}} \right)^{1/2}}{\left[1 + \frac{\rho_{01}}{\left(\frac{\rho_{m1}}{\rho_{m2}} \right) \rho_{m1}} \right]^{3/2}} \]

\[\left(\frac{m_2}{m_1} \right)^{3/2} \left(\frac{M_2}{M_1} \right) = \frac{\left(\frac{\rho_{m1}}{\rho_{m2}} \right)^{1/2}}{\left[1 + \frac{\rho_{01}}{\left(\frac{\rho_{m1}}{\rho_{m2}} \right)} \left(\frac{\rho_{m1}}{\rho_{m2}} \right) \right]^{3/2}} \]
3. SPITZER’S INSTABILITY

\[
\left(\frac{m_2}{m_1}\right)^{3/2} \left(\frac{M_2}{M_1}\right) = \frac{\left(\frac{\rho_{m1}}{\rho_{m2}}\right)^{1/2}}{\left(1 + \alpha \frac{\rho_{m1}}{\rho_{m2}}\right)^{3/2}}
\]

Our simplified \(\alpha\):

\[
\alpha \equiv \frac{\rho_{01}}{\rho_{m1}}
\]

Spitzer’s \(\alpha\):

\[
\alpha \equiv \frac{5}{4} \frac{\rho_{01}}{\rho_{m1}} \left(\frac{r_{2s}}{r_2}\right)^2 \approx 5.6
\]

where \(r_{2s}^2\) is the mean value of \(r^2\) for the population 2

Maximum possible value for the right-hand term \(\sim 0.16\)

\[
\Rightarrow \frac{M_2}{M_1} < 0.16 \left(\frac{m_2}{m_1}\right)^{3/2}
\]

OTHERWISE EQUIPARTITION CANNOT BE REACHED!
SPITZER’S INSTABILITY:

It is not possible to reach equipartition if $M_2/M_1 < 0.16 \left(\frac{m_2}{m_1}\right)^{3/2}$.

If the total mass of the heavy population is similar to the total mass of the light population, equipartition is not possible:

the heavy population forms a cluster within the cluster, i.e. a sub-cluster at the centre of the cluster, dynamically decoupled from the rest of the cluster.

The massive stars in the sub-cluster keep transferring kinetic energy to the lighter stars but cannot reach equipartition: the core of massive stars continues to contract till infinite density!

The contraction stops when most of the massive stars eject each other from the cluster by 3-body encounters or when most of the massive stars collapse into a single object (see last lecture).
How common is Spitzer's instability?

No analytic calculation that generalizes Spitzer calculation (2 mass system) for a generic mass function (Vishniac 1978 has dangerous assumptions – see Merritt 1981, also Miocchi 2006)

But several numerical tests:

SUGGEST SPITZER'S INSTABILITY IS COMMON

EQUIPARTITION MAY BE IMPOSSIBLE TO REACH
3. SPITZER'S INSTABILITY

If equipartition in a non-rotationally supported system (velocity dispersion σ first non-zero term of velocity)

$$m_i \sigma_i^2 \sim m_j \sigma_j^2 \rightarrow \sigma(m) \mu m^{-0.5}$$

- N-body simulations of globular clusters
- initial mass function (Salpeter, Miller-Scalo)
- only King models

Trenti & van der Marel 2013
3. SPITZER’S INSTABILITY

- Monte-Carlo simulations of globular clusters
- Initial realistic mass function (Kroupa 2001)
- only Plummer model

$$\sigma(m) \propto m^{-0.5}$$

$$\sigma^2(m) \propto \exp(-m)$$

Bianchini et al. 2016
3. SPITZER'S INSTABILITY

- N-body simulations of open clusters
 $N \sim 6000$
 $M \sim 3900 \, M_{\odot}$
 $R_{\text{vir}} \sim 1 \, \text{pc}$

- Initial realistic mass function, stellar evolution and Milky Way tidal field

- King models

Spera, MM & Jeffries 2016
Star clusters try to reach equipartition but never attain it in steady state:

- Initially flat sigma profile
Star clusters try to reach equipartition but never attain it in steady state:

- initially flat sigma profile
- high mass stars tend to equipartition

At half-mass radius
Star clusters try to reach equipartition but never attain it in steady state:

- initially flat sigma profile
- high mass stars tend to equipartition
Star clusters try to reach equipartition but never attain it in steady state:

- initially flat sigma profile
- high mass stars tend to equipartition
- high mass stars become hotter

At half-mass radius

Spera, MM & Jeffries 2016
Star clusters try to reach equipartition but never attain it in steady state:

- initially flat sigma profile
- high mass stars tend to equipartition
- high mass stars become hotter

Spera, MM & Jeffries 2016
Star clusters try to reach equipartition but never attain it in steady state:

- initially flat sigma profile
- high mass stars tend to equipartition
- high mass stars become hotter
Star clusters try to reach equipartition but never attain it in steady state:

- initially flat sigma profile
- high mass stars tend to equipartition
- high mass stars become hotter

Spera, MM & Jeffries 2016
3. SPITZER'S INSTABILITY

Star clusters try to reach equipartition but never attain it in steady state:

- Initially flat sigma profile
- High mass stars tend to equipartition
- High mass stars become hotter

At half-mass radius

Spera, MM & Jeffries 2016
Star clusters with King model + virial equilibrium do not seem to reach equipartition.

What about non-virial and non-King models?

- N-body simulations of open clusters
- Initial realistic mass function (Kroupa 2001)
- FRACTAL (sub-virial) initial conditions

Parker+ 2016
3. SPITZER'S INSTABILITY

What about non-virial and non-King models?

- N-body simulations of open clusters
- Initial realistic mass function (Kroupa 2001)
- FRACTAL (sub-virial) initial conditions
- again: $\sigma(m)$ does not depend on m

Parker+ 2016
What about non-virial and non-King models?

Merger of clumps (20 clumps at rest) equivalent to SUB-VIRIAL initial conditions

Spera, MM & Jeffries 2016
3. SPITZER'S INSTABILITY

What about non-virial and non-King models?

Merger of clumps (20 clumps at rest) equivalent to SUB-VIRIAL initial conditions
What about non-virial and non-King models?

Merger of clumps (20 clumps at rest) equivalent to SUB-VIRIAL initial conditions

SAME TREND AS VIRIAL KING MODEL

At half-mass radius

Spera, MM & Jeffries 2016
References:

* Spitzer L., Dynamical evolution of globular clusters, 1987, Princeton University Press

* Hut P., Gravitational Thermodynamics, astroph/9704286